-
39组合总数
- 代码随想录 (programmercarl.com)
-
第一印象
- 本题的元素可以重复,那么返回条件就是是大于等于目标值。依旧是利用path和result存储值。
-
讲解观后感
- sum值可以不作为参数传入递归函数中,直接用target -。但是保有sum值可以方便剪枝。
- 剪枝操作可以先通过排序使数组单调递增。再利用当前sum与当前值的和来提前终止for循环.
-
解题代码
-
func combinationSum(candidates []int, target int) [][]int {
ans := make([][]int, 0)
if len(candidates)==0 {
return ans
}
path := []int{}
sum := 0
var dfs func(candidates []int, idx int, sum int, target int)
dfs = func(candidates []int, idx int, sum int, target int) {
if sum > target {
return
}
if sum == target {
temp := make([]int, len(path))
copy(temp, path)
ans = append(ans, temp)
return
}
for i:=idx;i<len(candidates);i++ {
sum += candidates[i]
path = append(path, candidates[i])
dfs(candidates, i, sum, target)
path = path[:len(path)-1]
sum -= candidates[i]
}
}
dfs(candidates, 0, sum, target)
return ans
}
- 剪枝:
-
func combinationSum(candidates []int, target int) [][]int {
ans := make([][]int, 0)
if len(candidates)==0 {
return ans
}
path := []int{}
sum := 0
sort.Ints(candidates) //排序操作
var dfs func(candidates []int, idx int, sum int, target int)
dfs = func(candidates []int, idx int, sum int, target int) {
if sum == target {
temp := make([]int, len(path))
copy(temp, path)
ans = append(ans, temp)
return
}
for i:=idx;i<len(candidates)&&sum+candidates[i]<=target;i++ { //剪枝操作
sum += candidates[i]
path = append(path, candidates[i])
dfs(candidates, i, sum, target)
path = path[:len(path)-1]
sum -= candidates[i]
}
}
dfs(candidates, 0, sum, target)
return ans
}
-
40组合总数II
- 代码随想录 (programmercarl.com)
-
第一印象
- 本题每个数字只能使用一次,那么递归传参就得+1
-
讲解观后感
- 这题的去重操作十分巧妙。关于树形结构中树层与树枝的讨论十分形象。

-
解题代码
- 使用used数组
-
func combinationSum2(candidates []int, target int) [][]int {
ans := make([][]int, 0)
if len(candidates)==0 {
return ans
}
path := []int{}
sum := 0
sort.Ints(candidates) //排序操作
used := make([]bool, len(candidates))
var dfs func(candidates []int, target int,idx int, sum int)
dfs = func(candidates []int, target int,idx int, sum int) {
// if sum > target {
// return
// }
if sum == target {
temp := make([]int, len(path))
copy(temp, path)
ans = append(ans, temp)
return
}
for i:=idx;i<len(candidates)&&sum+candidates[i]<=target;i++ {
// used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
// used[i - 1] == false,说明同一树层candidates[i - 1]使用过
if i > 0 && candidates[i] == candidates[i-1] && used[i-1] == false {
continue
}
sum += candidates[i]
path = append(path, candidates[i])
used[i] = true
dfs(candidates, target, i+1, sum)
used[i] = false
path = path[:len(path)-1]
sum -= candidates[i]
}
}
dfs(candidates, target, 0, sum)
return ans
}
- 不使用used数组
-
func combinationSum2(candidates []int, target int) [][]int {
ans := make([][]int, 0)
if len(candidates)==0 {
return ans
}
path := []int{}
sum := 0
sort.Ints(candidates) //排序操作
var dfs func(candidates []int, target int,idx int, sum int)
dfs = func(candidates []int, target int,idx int, sum int) {
if sum == target {
temp := make([]int, len(path))
copy(temp, path)
ans = append(ans, temp)
return
}
for i:=idx;i<len(candidates)&&sum+candidates[i]<=target;i++ {
// i != start 限制了这不对深度遍历到达的此值去重
if i != idx && candidates[i] == candidates[i-1] { // 去重
continue
}
sum += candidates[i]
path = append(path, candidates[i])
dfs(candidates, target, i+1, sum)
path = path[:len(path)-1]
sum -= candidates[i]
}
}
dfs(candidates, target, 0, sum)
return ans
}
- 不使用sum传参
-
var (
res [][]int
path []int
)
func combinationSum2(candidates []int, target int) [][]int {
res, path = make([][]int, 0), make([]int, 0, len(candidates))
sort.Ints(candidates) // 排序,为剪枝做准备
dfs(candidates, 0, target)
return res
}
func dfs(candidates []int, start int, target int) {
if target == 0 { // target 不断减小,如果为0说明达到了目标值
tmp := make([]int, len(path))
copy(tmp, path)
res = append(res, tmp)
return
}
for i := start; i < len(candidates); i++ {
if candidates[i] > target { // 剪枝,提前返回
break
}
// i != start 限制了这不对深度遍历到达的此值去重
if i != start && candidates[i] == candidates[i-1] { // 去重
continue
}
path = append(path, candidates[i])
dfs(candidates, i+1, target - candidates[i])
path = path[:len(path) - 1]
}
-
131分割回文串
- 代码随想录 (programmercarl.com)
-
讲解观后感
- 本题也是经典的利用回溯算法的题目。而关于回溯的用法中,首先遇到的难点就是分割究竟应该如何表示。只要把index和i构成的区间是分割后的区间理解明白,就能解决了。
- 卡尔也帮我们列出了这道题的几个难点,帮助我们理解。
-
切割问题可以抽象为组合问题
如何模拟那些切割线
切割问题中递归如何终止
在递归循环中如何截取子串
如何判断回文
-
解题代码
-
var (
path []string // 放已经回文的子串
res [][]string
)
func partition(s string) [][]string {
path, res = make([]string, 0), make([][]string, 0)
dfs(s, 0)
return res
}
func dfs(s string, start int) {
if start == len(s) { // 如果起始位置等于s的大小,说明已经找到了一组分割方案了
tmp := make([]string, len(path))
copy(tmp, path)
res = append(res, tmp)
return
}
for i := start; i < len(s); i++ {
str := s[start : i+1]
if isPalindrome(str) { // 是回文子串
path = append(path, str)
dfs(s, i+1) // 寻找i+1为起始位置的子串
path = path[:len(path)-1] // 回溯过程,弹出本次已经填在的子串
}
}
}
func isPalindrome(s string) bool {
for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
if s[i] != s[j] {
return false
}
}
return true
}